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In this paper we describe how three qubit entanglement can be analyzed with local mea-
surements. For this purpose we decompose entanglement witnesses into operators that
can be measured locally. Our decompositions are optimized in the number of measure-
ment settings needed for the measurement of one witness. Our method allows to detect
true threepartite entanglement and especially GHZ-states with only four measurement
settings.
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1. INTRODUCTION

Entanglement is one of the most puzzling features of quantum theory and
of great importance for quantum information theory. It is the resource that makes
various quantum protocols possible that perform certain tasks better than it would
be possible with purely classical methods (Macchiavelloet al., 2000). The inves-
tigation and characterization of entanglement with experimental and theoretical
methods itself is therefore a task of great importance.

From an experimental point of view it is important to find effective techniques
for the production and detection of entanglement. For the detection of entanglement
several strategies are known: One can determine the whole density matrix (Thew
et al., 2002) and then try to apply one of the necessary or sufficient entanglement
criteria, e.g. the PPT criterion (Horodeckiet al., 1996; Peres, 1996). One can also
look for a violation of Bell inequalities (Werner and Wolf, 2001b). Furthermore,
there have been several proposals of detecting entanglement without estimating
the whole density matrix (Horodecki, 2001; Horodecki and Ekert, 2002).

However, all these nice ideas have also some disadvantages. Estimating the
whole density matrix requires a lot of measurements, and in fact one does not
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need to know the whole matrix in order to check whether it is entangled or not.
On the other hand, looking for a violation of Bell inequalities may not suffice for
making a decision, since there are entangled states that do not violate any known
Bell inequality (Werner and Wolf, 2000, 2001a;Żukowski and Brukner, 2001). It
has even been conjectured that entangled states with a positive partial transpose
do not violate any Bell inequality at all (Peres, 1999). Finally, the recent proposals
of detection require collective measurements on several qubits which makes them
hard to implement with the present techniques.

Furthermore, the schemes mentioned above are in some sense too general
for many experimental situations. They assume that no a priori information about
the state is given. However, in a typical experimental situation one often tries to
prepare a certain pure state. Because of imperfections of the experimental apparatus
the output state will be a mixture of the desired state and some noise instead. In
this case it is desirable to know whether the produced state is still entangled
or not.

In Gühneet al. (2002a,b), we proposed a general scheme for entanglement
detection for the case that some knowledge about the state is given. In this scheme
we only want to use local projective measurements, since these measurements can
easily be implemented in a lab. In addition, we would like to decrease the number
of measurements needed to the minimum, of course.

The scheme relies on the well known concept of witness operators (Horodecki
et al., 1996; Terhal, 2000). An hermitean operatorW is called a witness opera-
tor (or entanglement witness) detecting the entangled state%e if Tr (W%e) < 0
while Tr (W%s) ≥ 0 holds for all separable states%s. Thus if a measurement yields
Tr (W%) < 0 then the state% is entangled with certainty. As a consequence of
the Hahn-Banach theorem it follows that for every entangied state%e there exists
such an entanglement witness and for many states it is known how to construct
such witnesses (Lewensteinet al., 2000). After having constructed the witness,
we decompose it into a sum of local measurements, then the expectation value
can be measured with simple methods. This decomposition has to be optimized
in a certain way since we want to use the smallest number of measurements
possible.

Our paper is organized as follows: The first section deals with the decom-
position into local measurements because this is the core of our approach. We
define there what we understand by an optimized decomposition. We would like
to remark here that finding optimized decompositions is in general a hard task,
much harder than constructing entanglement witnesses. In the second section we
illustrate our approach with an example of a two qubit system. We construct the
witness and determine its optimal decomposition. Finally in the third and main part
we apply this idea to three qubit systems. We explain how GHZ-type and W-type
entanglement can be detected with local measurements. We also determine the
minimal number of measurements needed for this.
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2. LOCAL DECOMPOSITIONS

Assume that we have an hermitean operatorH acting on a tensor product
H = HA ⊗HB ⊗ . . .⊗HZ of two or more finite dimensional Hilbert spaces. To
slenderize the notation we look here at the case that we have a bipartiteN ×
N-system:H = HA ⊗HB with dim (HA) = dim(HB) = N. But all definitions
in this section can be extended to more parties in an obvious manner. To measure
the expectation value of this operator locally, we have to decompose it in a sum
of tensor products of operators acting on only one system, or, equivalently, we
have to decompose it into a sum of projectors onto product vectors:

H =
m∑

i=1

Ai ⊗ Bi =
n∑

i=1

ci |ei 〉〈ei | ⊗ | fi 〉〈 fi |. (1)

By measuring the expectation value of the projectors|ei 〉〈ei | ⊗ | fi 〉〈 fi | and adding
the results with the weightsci this decomposition (1) can be measured locally.
There are, of course, many possibilities of finding a decomposition like (1). So we
have to optimize the decomposition in a certain sense. But there are even several
possibilities of defining an optimized decomposition.

On the first sight one might try to minimize the number of product vectors
corresponding to minimizingn in (1). This optimization procedure is already
known from the literature, it was considered in Sanperaet al. (1998). There it
was shown that for a general operator acting on two qubits one needs five product
vectors and also a constructive way of computing these product vectors was given.

However, since we want to construct an experimentally accessible scheme for
entanglement detection it is natural to look for a decomposition where Alice and
Bob have to perform the smallest number of measurements possible. By “mea-
surements” we understand here von Neumann (or projective) measurements, since
they can be easily implemented. Such a measurement for Alice corresponds to a
choice of an orthonormal basis ofHA, and Bob has to choose an orthonormal basis
HB, too. So any operator of the form

M =
N∑

k,l=1

ckl |ek〉〈ek| ⊗ | fl 〉〈 fl | (2)

with 〈es|et 〉 = 〈 fs| ft 〉 = δst can be measured with only one collective setting of
measurement devices of Alice and Bob. Alice and Bob can distinguish the states
|ek fl 〉, measure the probabilities of these states and add their results with the
weights ckl to measureM . We call an operator which can be measured with
one measurement setting (likeM in Eq. (2)) alocal von Neumann measurement
(LvNM).

Having understood what can be realized with one measurement setting, we
can state another optimization strategy. We want to find a decomposition of the
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form

H =
K∑

i=1

N∑
k,l=1

ci
kl |ei

k〉〈ei
k| ⊗ | f i

l 〉〈 f i
l | (3)

with 〈ei
s | ei

t 〉 = 〈 f i
s | f i

t 〉 = δst and a minimalK . This K is the number of col-
lective measurement settings Alice and Bob have to use in order to measureH .
This optimization strategy is the aim we are considering in this paper when we
talk about “optimized” decompositions.

The reader should note that minimizingm in (1) is not the same as our
optimization strategy. However, for systems of dimensionN greater than 2 it
might be more suitable to decompose the witness asW =∑m

i Ai ⊗ Bi . As shown
in (Horodecki, 2002), the expectation values of operatorsAi or Bi can be measured
by a POVM with a single qubit as ancilla instead of counting clicks for all possible
N outcomes of the operator. Also minimizing the number of product vectors (i.e.
minimizing n in (1)) is not the same. This will become clear in a few seconds,
when we study two qubits.

3. TWO QUBITS

We illustrate the method by considering an experiment that aims at producing
a certain 2-qubit state|9〉 = a|01〉 + b|10〉written in the Schmidt decomposition,
i.e.a, b ≥ 0,a2+ b2 = 1. Because of imperfections, the produced state will rather
be

%p,d = p|9〉〈9| + (1− p)σ, (4)

where we assume that the noise stateσ lies inside a separable ball of radiusd
around the totally mixed state, i.e.‖σ − 1/4‖ ≤ d for some norm. Our aim is to
provide a local experimental method to tell whether the produced state is entangled
or not, based on witness operators.

Since we only want to explain our basic idea, we assume here that we have
white noise, this meansd = 0. The cased > 0 is studied in greater detail in (G¨uhne
et al., 2002b). We would like to stress that our assumptiond = 0 is in some sense
artificial. By this we mean that ifd = 0 there is a simple way of determining
whether%p, 0 is entangled or not: One can just measureany operatorA (which
fulfills Tr (A) 6= 4Tr (A|9〉〈9|)) and computep from the expectation value of
this operator. With this information the density matrix%p,0 can be constructed and
the PPT criterion can be used to decide whether it is entangled or not. This is not
possible for obvious reasons ifd > 0.

To reach our goal we first have to construct a proper entanglement witness. For
NPPT entangled states, i.e. entangled states with a nonpositive partial transpose,
the construction of a witness is relatively easy: The partial transpose of a projector
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onto an eigenvector of%TB with negative eigenvalue does the job. HereTB denotes
the partial transposition with respect to subsystemB.

The state%p,0 has one possible negative eigenvalue, namelyλ = (1− p)/4−
abp, with the corresponding eigenvector

|ψ−〉 = 1√
2

(|00〉 − |11〉) (5)

that is independent ofa andp. ThenW0 = |ψ−〉〈ψ−|TB is an entanglement witness
detecting%p,0 since

Tr ((|ψ−〉〈ψ−|TB )%p,0) = Tr
(
|ψ−〉〈ψ−|

(
%

TB
p,0

)) = λ− < 0. (6)

Having constructed the witness, all that remains is to decompose it. Defining
|z±〉 = |0, 1〉, |x±〉 = (|0〉 ± |1〉)/√2 and|y±〉 = (|0〉 ± i |1〉)/√2 we can decom-
pose the more general witness|φ〉〈φ|TB for |φ〉 = α|00〉 + β|11〉 as follows:

|φ〉〈φ|TB = α2|00〉〈00| + β2|11〉〈11| + αβ(|01〉〈10|)+ |10〉〈01|)
= α2|z+z+〉〈z+z+| + β2|z−z−〉〈z−z−| + αβ(|x+x+〉〈x+x+|
+ |x−x−〉〈x−x−| − |y+y−〉〈y+y−| − |y−y+〉〈y−y+|)

= 1

4
(1⊗ 1+ σz⊗ σz+ (α2− β2)(σz⊗ 1+ 1⊗ σz)

+ 2αβ(σx ⊗ σx + σy ⊗ σy)), (7)

where theσi are the Pauli matrices. This way of decomposing a witness can be
used for higher dimensions and for systems of more than two parties by using

|01〉〈10| + |10〉〈01| = |x+x+〉〈x+x+| + |x−x−〉〈x−x−|
− |y+y−〉〈y+y−| − |y−y+〉〈y−y+|. (8)

The local measurement of the general witness of Eq. (7) requires three measure-
ments of Alice and of Bob in thex, y, andz direction. This is also true for the
special caseα = −β = 1/

√
2 corresponding toW0. It is not possible to evaluate

the witness with less than three LvNMs:

Proposition 3.1. The witness W0 can not be decomposed into less than three
LvNMs, therefore the decomposition (7) is optimal.

Proof: The proof was first given in (G¨uhneet al., 2002a), we repeat it here be-
cause we extend it later to three qubit systems. Consider a decomposition requiring
two measurements:

|ψ〉〈ψ |TB =
1∑

i , j=0

c1
i j |A1

i 〉〈A1
i | ⊗ |B1

j 〉〈B1
j | +

1∑
i , j=0

c2
i j |A2

i 〉〈A2
i | ⊗ |B2

j 〉〈B2
j |, (9)
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where {|Ai 〉} and {|Bi 〉} are orthonormal bases forHA andHB, respectively.
With the help of a Schmidt decomposition as above we can write|ψ〉〈ψ |TB =∑3

i , j=0 λi j σi ⊗ σ j with

(λi j ) =


1
4 0 0 α2−β2

4
0 αβ

2 0 0
0 0 αβ

2 0
α2−β2

4 0 0 1
4

 . (10)

Note that the 3× 3 submatrix in the right bottom corner is of rank 3. Now we
write any projector on the rhs of (9) as a vector in the Bloch sphere:|A1

0〉〈A1
0| =∑3

i=0 sA
i σi is represented by the vectorsA1

0 = (1/2, sA
1 , sA

2 , sA
3 ) and |A1

1〉〈A1
1| by

sA1
1 = (1/2,−sA

1 ,−sA
2 ,−sA

3 ); |B1
0〉〈B1

0| can be written similarly. If we expand
the first sum on the rhs of (9) in the (σi ⊗ σ j ) basis, the 3× 3 submatrix in the
right bottom corner is given by (c1

00− c1
01− c1

10+ c1
11)(s

A
1 , sA

2 , sA
3 )T (sB

1 , sB
2 , sB

3 ).
This matrix is of rank 1. The corresponding submatrix from the second
LvNM on the rhs of (9) is also of rank 1 and we arrive at a contradiction:
No matrix of rank 3 can be written as a sum of two matrices of
rank 1. ¤

Note that the decomposition (7) requires six projectors onto product vectors
(PPV). By applying the method of Sanperaet al.(1998) it is possible to decompose
the witness using only five PPVs

|ψ〉〈ψ |TB = (α + β)2

3

3∑
i=1

|A′i A′i 〉〈A′i A′i | − αβ(|01〉〈01| + |10〉〈10|), (11)

where we have used the definitions

|A′1〉 = ei π3 cos(θ )|0〉 + e−i π3 sin(θ )|1〉
|A′2〉 = e−i π3 cos(θ )|0〉 + ei π3 sin(θ )|1〉 (12)

|A′2〉 = |A′1〉 + |A′2〉
cos(θ ) =

√
α/(α + β)

sin(θ ) =
√
β/(α + β). (13)

However, with this decomposition the measurement of the witness would require
four local correlated measurement settings, hence the two optimization strategies
are really different.
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4. THREE QUBITS

The state space for three qubits has a much richer structure concerning en-
tanglement than the space of two qubits. Let us briefly remind the reader of some
well known facts about three qubits. We first consider pure states. There are two
classes of states that are not genuine threepartite entangled: The fully separable
states, which can be written as

|φ f s〉ABC = |α〉A ⊗ |β〉B ⊗ |γ 〉C, (14)

and the biseparable states which can be written as a product state in the bipartite
system, which is created, if two of the three qubits are grouped together to one
party. One example is

|φbs〉A−BC = |α〉A ⊗ |δ〉BC. (15)

There are three possibilities of grouping two qubits together, hence there are three
classes of biseparable states. The genuine threepartite entangled states are the states
that are neither fully separable nor biseparable. Given two threepartite states,|φ〉
and |ψ〉, one can ask whether it is possible to transform|φ〉 into |ψ〉 with local
operations and classical communication, without requiring that this can be done
with probability 1. These operations are called stochastic local operations and
classical communication (SLOCC). It turns out (D¨ur et al., 2000) that|φ〉 can be
transformed into|ψ〉 iff there exist operatorsA, B, C, acting on the space of one
qubit with

|ψ〉 = A⊗ B⊗ C|φ〉. (16)

Surprisingly, it was proven in (D¨uret al., 2000) that there are two classes of genuine
threepartite entangled states that cannot be transformed into another by SLOCC.
One class, the class of GHZ-states can be transformed by SLOCC into

|G H Z〉 = 1/
√

2(|000〉 + |111〉), (17)

the other class, the class of W-states can be converted into

|W〉 = 1/
√

3(|100〉 + |010〉 + |001〉. (18)

Now we can classify the mixed states according to Ac´ın et al. (2001). We
define a mixed state% as fully separable if% can be written as a convex combi-
nation of fully separable pure states. A state% that is not fully separable is called
biseparable if it can be written as a convex combination of biseparable pure states.
One can, of course, define three classes of biseparable mixed states with respect
of one of the three partitions as well. Finally,% is fully entangled if it is neither
biseparable nor fully separable. There are again two classes of fully entangled
mixed states, the W-class and the GHZ-class. The state% belongs to the W-class, if
it can be written as a convex combination of pure W- states, and to the GHZ-class
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Fig. 1. The structure of the set of three qubit states: They
can be (S)eparable, (B)iseparable, (W)-entangled, or (GHZ)-
entangled.

otherwise. Taking into account that the set of all states is also a convex set, one
obtains an “onion”-structure. This structure is shown in Fig. 1.

In the same reference also witnesses for the detection of GHZ-type and W-type
states have been constructed. Here a want to compute the optimized decompositions
of these operators.

For the GHZ-class a witness operator is given by

WGHZ = 3

4
1− |GHZ〉〈GHZ|. (19)

If % is a mixed state withTr (%WG H Z) < 0 the state% belongs to the GHZ-
class. A decomposition ofWG H Z can be computed with similar methods as for the
two qubit case, it yields

WGHZ = 1

8
(5 · 1⊗ 1⊗ 1− 1⊗ σz⊗ σz− σz⊗ 1⊗ σz− σz⊗ σz⊗ 1

− 2 · σx ⊗ σx ⊗ σx + 1/2 · (σx + σy)⊗ (σx + σx)⊗ (σx + σy)

+1/2 · (σx − σy)⊗ (σx − σy)⊗ (σx − σy)). (20)

This witness can be measured with four collective measurment settings. Now we
have to show that this decomposition is optimal.

Proposition 4.2. The witness (19) cannot be measured with three LvNMs, i.e.
the decomposition (20) is optimal.

Proof: The proof is an extension of the two qubit case. First, we write the witness
in theσi ⊗ σ j ⊗ σk basis:WG H Z = 1/8

∑3
i , j ,k=0 λi jkσi ⊗ σ j ⊗ σk, and from (20)
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we obtain:

λi j 0 =


5 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1

 =: A(0) λi j 1 =


0 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 0

 =: A(1)

λi j 2 =


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

 =: A(2) λi j 3 =


0 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 0

 =: A(3).

We denote byA(ν),red the reduced 3× 3 matrices that appear when the first row and
the first column ofA(ν) is dropped: (A(ν),red)i , j := (A(ν))i , j=1, . . , 3. In the same
sense one can define a reduced tensor (λred

i jk )i , j ,k := (λi jk )i , j ,k = 1, . . , 3.
Let us now investigate what can be achieved with one measurement setting.

One measurement setting is of the form

M =
1∑

r,s,t=0

crst|Ar 〉〈Ar | ⊗ |Bs〉〈Bs| ⊗ |Ct 〉〈Ct |

=
3∑

i , j ,k=0

µi jkσi ⊗ σ j ⊗ σk, (21)

DefiningsA as the Bloch vector of|A0〉〈A0| (and similarlysB andsC for |B0〉〈B0|
and|C0〉〈C0| and using the same argumentation as in the two qubit case, it is easy
to see that the reduced 3× 3× 3 tensorµred

i jk is given by

µred
i jk =

1∑
r,s,t=0

crst(−1)r+s+t sA
i sB

j sC
k . (22)

Therefore for allk the matrices (µred
i jk )i , j are of rank 1.

In order to show thatWG H Z cannot be measured with three measurement
settings, it suffices to show that it is not possible to find three 3× 3 matrices
Bi , i ∈ {0, . . . , 2} of rank 1 such thatA(0),red, A(1),redandA(2),redcan be represented
as linear combinations of theBi . Let us assume the contrary, i.e. that we have three
Bi . Since theA(i ),red span a three-dimensional subspace in the space of all 3× 3
matrices, theBi have to be linear independent (as matrices) and have to span the
same space. That would imply that any of theBi could be written as a linear
combination of theA(i ),red. But a general linear combination of theA(i ),red is of the
form:

A =
−α β 0
β α 0
0 0 γ

 (23)
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This is of rank 1 if and only ifα = β = 0. Thus, we arrive at a contradiction, the
Bi cannot be of rank 1 and linear independent. ¤

For the investigation of W-states two witnesses were constructed in Ac´ınet al.
(2001). The first one is given by

WW1 = 2

3
1− |W〉〈W|, (24)

This witness detects states belonging to the W-class and the GHZ-class, i.e. its
expectation value is positive on all biseparable and fully separable states. The
optimized decomposition is given by

WW1 = 1

24
(17 · 1⊗ 1⊗ 1+ 7 · σz⊗ σz⊗ σz

+ 3 · σz⊗ 1⊗ 1+ 3 · 1⊗ σz⊗ 1+ 3 · 1⊗ 1⊗ σz

+ 5 · σz⊗ σz⊗ 1+ 5 · σz⊗ 1⊗ σz+ 5 · 1⊗ σz⊗ σz

− (1+ σz+ σx)⊗ (1+ σz+ σx)⊗ (1+ σz+ σx)

− (1+ σz− σx)⊗ (1+ σz− σx)⊗ (1+ σz− σx)

− (1+ σz+ σy)⊗ (1+ σz+ σy)⊗ (1+ σz+ σy)

−(1+ σz− σy)⊗ (1+ σz− σy)⊗ (1+ σz− σy)).

(25)

Here, only five correlated measurement settings are necessary. This decomposition
is also optimal:

Proposition 4.3. The witness WW1 cannot be measured with four measurement
settings, i.e. the decomposition (25) is optimal.

Proof: The strategy of the proof is the same as for the proof of Proposition 2, so
we can make it short. First one computesWW1 = 1/8

∑3
i , j ,k=0 λi jkσi ⊗ σ j ⊗ σk,

and the correspondingA(i ),red, i ∈ 0, .., 3. This time, it turns out that they span a
four-dimensional space.

Again, it suffices to show that we cannot find four matricesBi , i ∈ {0, . . . , 3}
of rank 1 such thatA(0),red, A(1),red, A(2),red, andA(3),redcan be represented as linear
combinations of theBi . Here, the assumption that we have fourBi fails due to
similar reasons as above: As above, theBi have to be linear independent and it
has to be possible to write any of theBi as a linear combination of theA(i ),red. A



P1: GDX

International Journal of Theoretical Physics [ijtp] pp903-ijtp-468231 August 19, 2003 21:39 Style file version May 30th, 2002

Investigating Three Qubit Entanglement With Local Measurements 1011

general linear combination of theA(i ),red, is now of the form

A =
α 0 β

0 α γ

β γ δ

 , (26)

and this is of rank 1 if and only ifα = β = γ = 0, hence we arrive at a contradic-
tion. ¤

The second witness for W-class states is given by

WW2 = 1

2
1− |G H Z〉〈G H Z|. (27)

This witness can be measured locally with the same decomposition as (20) sub-
stracted by1/4. If −1/4≤ Tr (WW2%) ≤ 0,% is threepartite entangled, it is either
a W-state or a GHZ-state. IfTr (WW2%) ≤ −1/4,% is a GHZ-state. It also can serve
for the detection of states of the type (1− p)1/8+ p|W〉〈W|, this is explained in
Acı́n et al. (2001).

Let us conclude this section with a remark about the relationship between
convertability under SLOCC and the number of LvNMs needed for a local mea-
surement. One may interpret our results for two qubits in the following way: A
projector|φ〉〈φ| can be measured with one or three LvNMs, depending on whether
it is a product state or not. These two classes coincide with the two inequivalent (un-
der SLOCC) classes for two qubits (D¨ur et al., 2000). One may think that SLOCC
and LvNM are in this way related. Even our results in G¨uhneet al.(2002b), which
state that the number of LvNMs needed strongly depends on the Schmidt rank of
|φ〉 for N × N-systems may support this conjecture, since for bipartite systems the
Schmidt rank classifies inconvertible sets under SLOCC. But our work on three
qubits suggests that this coincidence is just by chance. For a general state|ψG H Z〉
of the GHZ-class there always exists an orthonormal product basis in which it can
be written as

|ψG H Z〉 = λ0|000〉 + λ1ei θ |100〉 + λ2|101〉 + λ3|110〉 + λ4|111〉 (28)

and for a general W-state|ψW〉 there exists the same description, but withλ4 =
θ = 0 (Acı́n et al., 2000). If one has an optimized decomposition of a general
|ψG H Z〉〈ψG H Z| it should be possible to derive a decomposition of|ψW〉〈ψW| by
settingλ4 = θ = 0, this decomposition would need less or the same number of
LvNMs. In the other direction, this means that for a general|ψW〉 there exists a
|ψG H Z〉which needs at least the same number of LvNMs for a local measurement.
But as we have shown for|W〉 there also exists a GHZ-state (namely|GHZ〉) that
needs less LvNMs. Hence, the relation between SLOCC and LvNM seems not to
be so simple, if there is a relation at all.
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5. CONCLUSION

We have studied how three qubit entanglement can be investigated with local
measurements. For this purpose we decomposed already known entanglement
witnesses into local measurements. We have shown that these decompositions
are optimal. By this, we have shown that four measurement settings suffice for the
detection of true threepartite entanglement and especially GHZ-type entanglement.
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and KarolŻyczkowski for the discussions in Ustro´n, the organizers for their work,
and last but not least for their financial support. This work has further been sup-
ported by the DFG (Graduiertenkolleg 282 and Schwerpunkt “Quanteninforma-
tionsverarbeitung”).

REFERENCES

Acı́n, A., Andrianov, A., Costa, L., Jane, E., Latorre, J., and Tarrach, R. (2000). Generalized Schmidt
decomposition and classification of three-quantum-bit states.Physical Review Letters85, 1560.
Preprintquant-ph/0003050.

Acı́n, A., Bruß, D., Lewenstein, M., and Sanpera, A. (2001). Classification of mixed three-qubit states.
Physical Review Letters87, 040401.

Dür, W., Vidal, G., and Cirac, J. (2000). Three qubits can be entangled in two inequivalent ways.
Physical Review A62, 062314.Preprintquant-ph/0005115.

Gühne, O., Hyllus, P., Bruß, D., Ekert, A., Lewenstein, M., Macchiavello, C., and Sanpera, A. (2002a).
Detection of entanglement with few local measurements.Physical Review A66, 062305.Preprint
quant-ph/0205089.

Gühne, O., Hyllus, P., Bruß, D., Ekert, A., Lewenstein, M., Macchiavello, C., and Sanpera, A. (2002b).
Experimental detection of entanglement via witness operators and local measurements.Preprint
quant-ph/0210134, to be published in a special issue of Journal of Modern Optics.

Horodecki, P. (2001). Measuring quantum entanglement without prior state reconstruction.Preprint
quant-ph/0111082.

Horodecki, P. (2002). Mean of continuous variables observable via measurement on single qubit.
Preprintquant-ph/0210163.

Horodecki, P. and Ekert, A. (2002). Method for direct detection of quantum entanglement.Physical
Review Letters89, 127902.Preprintquant-ph/0111064.

Horodecki, M., Horodecki, P., and Horodecki, R. (1996). Separability of mixed states: Necessary and
sufficient conditions.Physics Letters A232, 1.

Lewenstein, M., Kraus, B., Cirac, J., and Horodecki, P. (2000). Optimization of entanglement witnesses.
Physical Review A62, 052310.

Macchiavello, C., Palma, G., and Zeilinger, A. (eds.) (2000).Quantum Computation and Quantum
Information Theory, World Scientific, Singapore.

Peres, A. (1996). Separability criterion for density matrices.Physical Review Letters77, 1413.
Peres, A. (1999). All the Bell inequalities.Foundations of Physics29, 589.



P1: GDX

International Journal of Theoretical Physics [ijtp] pp903-ijtp-468231 August 19, 2003 21:39 Style file version May 30th, 2002

Investigating Three Qubit Entanglement With Local Measurements 1013

Sanpera, A., Tarrach, R., and Vidal, G. (1998). Local description of quantum inseparability.Physical
Review A58, 826.

Terhal, B. (2000). Bell inequalities and the separability criterion.Physics Letters A271, 319.
Thew, R., Nemoto, K., White, A., and Munro, W. (2002). Qudit quantum-state tomorgraphy.Physical

Review A66, 012303.
Werner, R. and Wolf, M. (2000). Bell’s inequalities for states with positive partial transpose.Physical

Review A61, 062102.Preprintquant-ph/9910063.
Werner, R. and Wolf, M. (2001a). All multipartite Beil-correlation inequalities for two dichotomic

observables per site.Physical Review A64, 032112.Preprintquant-ph/0102024.
Werner, R. and Wolf, M. (2001b). Bell inequalities and entanglement.Quantum Information and

Computation Journal1, 1.Preprintquant-ph/0107093.
Zukowski, M. and Brukner, C. (2001). Bell’s theorem and general N-qubit states.Physical Review

Letters88, 210401.Preprintquant-ph/0102039.


